Effects of eugenol on T-type Ca2+ channel isoforms.
نویسندگان
چکیده
Eugenol has been used as an analgesic in dentistry. Previous studies have demonstrated that voltage-gated Na(+) channels and high-voltage-activated Ca(2+) channels expressed in trigeminal ganglion (TG) neurons sensing dental pain are molecular targets of eugenol for its analgesic effects. However, it has not been investigated whether eugenol can affect T-type Ca(2+) channels, which are known to be detected in the afferent neurons. In this report, we investigate how eugenol can influence cloned T-type channel isoforms expressed in HEK293 cells, using whole-cell patch clamp. Application of eugenol inhibited Cav3.1, Cav3.2, and Cav3.3 currents in a concentration-dependent manner with IC50 values of 463, 486, and 708 μM, respectively. Eugenol was found to negatively shift the steady-state inactivation curves of the T-type channel isoforms, but it did not shift their activation curves. In addition, eugenol had little effect on the current kinetics of Cav3.1 and Cav3.2, but it accelerated the inactivation kinetics of Cav3.3 currents. Reduction of channel availability enhanced eugenol inhibition sensitivity for Cav3.1 and Cav3.2, but not for Cav3.3. Moreover, eugenol inhibition of T-type channel isoforms was found to be use dependent. Finally, we show that the T-type currents recorded from rat TG neurons were inhibited by eugenol with a similar potency to Cav3.1 and Cav3.2 isoforms. Taken together, our findings suggest that T-type Ca(2+) channels are additional molecular targets for the pain-relieving effects of eugenol.
منابع مشابه
Effects of Eugenol on T-type Ca Channel Isoforms
Eugenol has been used as an analgesic in dentistry. Previous studies have demonstrated that voltage-gated Na channels and high-voltage-activated Ca channels expressed in trigeminal ganglion (TG) neurons sensing dental pain are molecular targets of eugenol for its analgesic effects. However, it has not been investigated whether eugenol can affect T-type Ca channels, which are known to be detecte...
متن کاملCalcium Dependence of Eugenol Tolerance and Toxicity in Saccharomyces cerevisiae
Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ i...
متن کاملAtp Regulation of Recombinant Type 3 Inositol 1,4,5-Trisphosphate Receptor Gating
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enh...
متن کاملT-type Ca2+ channels encode prior neuronal activity as modulated recovery rates.
T-type Ca2+ channels give rise to low-threshold inward currents that are central determinants of neuronal excitability. The availability of T-type Ca2+ channels is strongly influenced by voltage-dependent inactivation and recovery from inactivation. Here, we show that native and cloned T-type Ca2+ channel subunits selectively encode specific aspects of prior membrane potential changes via a pow...
متن کاملThe effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel
Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 347 2 شماره
صفحات -
تاریخ انتشار 2013